
NATURAL Version 3.1.1

Release Notes for UNIX

Manual Order Number: NAT311–008UNX

This document applies to NATURAL Version 3.1.1 for UNIX, and to all subsequent releases.

Specifications contained herein are subject to change, and these changes will be reported in subsequent
release notes or new manual editions.

� March 1998, SOFTWARE AG. All rights reserved.

SOFTWARE AG documentation often refers to numerous hardware and software products by their trade
names. In most, if not all cases, these designations are claimed as trademarks or registered trademarks by
their respective companies.

I

TABLE OF CONTENTS

1. GENERAL INFORMATION 1.

Introduction 1.

Documentation 2.

Example Library for New Features 2.

Compatibility 3.
Overview of Intended Incompatibilities 3.

Support of Version 2.1 Discontinued 4.

Known Problems 4.

2. PROGRAMMING LANGUAGE 5.

New Statements 6.
DEFINE WORK FILE 6.
Statements for NATURAL Remote Procedure Call 6.
Statements for NaturalX 6.

New System Variables 7.
New Date System Variables 7.

New System Function 8.
SORTKEY 8.

Enhanced Statements 9.
CALLNAT and PERFORM 9.
COMPRESS 10.
COMPRESS and MOVE 12.
DEFINE DATA 13.
DIVIDE 16.
EJECT 17.
ESCAPE 17.
FIND 18.
FIND, GET, HISTOGRAM, READ and STORE 20.
FIND and READ 20.
HISTOGRAM and READ 20.
MOVE 22.

NATURAL Version 3.1.1 Release Notes for UNIX

II

PRINT 22.
MASK Option (Logical Condition) 22.
SUBSTRING Option (Various Statements) 23.
Incomplete Statement Blocks (Various Statements) 23.
Database Field Names (any Database Statement) 23.

SQL Enhancements 24.
Flexible SQL 24.
SELECT Statement 24.
PROCESS SQL Statement 24.
Date and Time Formats 24.
User-Definable Character in Names of Indicator Fields 24.

3. SYSTEM COMMANDS AND UTILITIES 25.

New System Commands 26.
COMPOPT — Compilation Options 26.
DEBUG — Invoke Remote Debugging Utility 27.
LASTMSG — Information on Last Error Situation 27.
LIST COUNT — Count Number of Objects in Library 27.
NATLOAD, NATUNLD, SYSUNLD — Unloading and Loading Utilities 27.
REGISTER and UNREGISTER — NaturalX 28.

Enhanced System Commands 28.
CATALL 28.
LIST 28.
TECH 28.
XREF 28.

New SYSNCP Utility — Command Processor 29.

New SYSUNLD Utilities — Unloading and Loading 30.

New NATTERMCAP Utility — Terminal Capabilities 31.

New Remote Debugging Utility 31.

NATPARM Utility 32.
Revised User Interface 32.

SYSDDM Utility 32.
Generation of Null-Value Indicator Fields 32.

SYSTRANS Utility 32.

Table of Contents

III

4. PROFILE PARAMETERS 33.

File Numbers 33.

New Profile Parameters 34.
ACTPOLICY, AUTOREGISTER, COMSERVERID — NaturalX 34.
CM — Suppress Command Mode 34.
DBSHORT — Interpretation of Database Short Names 34.
DFOUT — Date Format for Output 34.
DFSTACK — Date Format for Stack 34.
DFTITLE — Date Format for Default Report Title 34.
ESCAPE — Disable Terminal Commands “%%” and “%.” 35.
FCDP — Suppress Filler Character for Dynamically Protected Input Fields 35.
GFID — Generation of Global Format Identifiers 35.
KEY — Value Assignments to PA, PF and CLEAR Keys 35.
MSGSF — Avoid Truncation of Message Texts in Windows 35.
OPF — Suppress Overwriting of Protected Fields by Helproutines 36.
RDACTIVE, RDNODE and RDPORT — Remote Debugging 36.
REINP — Automatic REINPUT for Invalid Data 36.
V22COMP — Version 2.2 Compatibility 36.
YSLW — Year Sliding Window 36.
Parameters for Remote Procedure Call (RPC) 36.

Enhanced Profile Parameters 37.
DD 37.
FDIC, FNAT, FSEC, FUSER, LFILE 37.
TD 37.
TF 37.
USIZE 37.
XREF 37.

5. MISCELLANEOUS 39.

Support of Year 2000 40.
The “Year 2000” Problem 40.
Handling Date Information with IS Option and VAL Function 40.
Default Edit Mask for Date — The DF Parameter 40.
Date System Variables 41.
Date as Selection Criterion in Utilities 41.

NATURAL Version 3.1.1 Release Notes for UNIX

IV

“Sliding Window” — The YSLW Parameter 41.
Date Format for Output — The DFOUT Parameter 42.
Date Format for Stack — The DFSTACK Parameter 42.
Date Format for Default Report Title — The DFTITLE Parameter 43.

NATURAL Remote Procedure Call (RPC) 44.
Programming Language Enhancements for Conversational RPCs 44.
RPC Without Stub 45.
Remote Directory 45.
Remote Error Handling 46.
Reduced Data Transfer Load 46.
Logon Handling and Support of NATURAL SECURITY 46.
Passing Floating-Point Parameters to/from Version 2.2 48.
Sharing the FUSER System File Between Versions 2.2 and 3.1 48.

ADABAS 49.

Improving SQL Database Access Performance 49.

Search Sequence for Objects to be Executed 50.

Array Operations with Variable Index Ranges 51.
Interception of Mismatching Array Ranges 51.
Comparison and Assignment of Variable Array Ranges 51.

Enhanced Error Message Texts 52.

Assignment of Negative Numbers to Date/Time Intercepted 52.

Suppressing of Zero Display for Time Fields 53.

Assignments Between Numeric Variables of Same Length 53.

Dump Generation with CATALL 53.

Loading of Datasets with INPL 54.

6. NEW NATURAL-RELATED PRODUCTS 55.

Natural@Web 55.

NaturalX (Support of DCOM) 56.

1

1

GENERAL INFORMATION

Introduction

These Release Notes inform you of the enhancements and new features that are provided with
Version 3.1.1 of NATURAL for UNIX.

In addition to providing the enhancements and new features described in these Release Notes,
NATURAL Version 3.1.1 also consolidates all error corrections, modifications and
enhancements provided with previous patch-level releases of Version 2.2.1.

All enhancements and new features described in these Release Notes are fully documented in
the NATURAL Version 3.1.1 documentation set.

Some of these enhancements lead to intentional minor incompatibilities between Version 2.2.1
and Version 3.1 (see page 3).

1 NATURAL Version 3.1.1 Release Notes for UNIX

2

Documentation

A completely revised set of NATURAL manuals is provided with the release of NATURAL
Version 3.1.1 for UNIX.

The basic NATURAL Version 3.1.1 documentation set for UNIX consists of the following
manuals:

� NATURAL User’s Guide for OpenVMS and UNIX

� NATURAL Programming Guide (*)

� NATURAL Reference Manual (*)

� NATURAL Statements Manual (*)

� NATURAL Debugging Manual

� NATURAL Installation and Operations Manual for OpenVMS and UNIX

(*) These manuals also apply to Version 2.3.1 on mainframe computers and
Version 3.1.1 on Windows NT. They are also available in German.

The manuals are available on CD-ROM (the Installation and Operations Manual is also
available in printed form).

Note: The documentation set for NATURAL 3.1.1 under UNIX also contains information related
to NATURAL under OpenVMS. At present, however, some of the information related to
OpenVMS may no longer or not yet apply. With NATURAL Version 3.1.1 for OpenVMS, which
will be released in due course, a new documentation set, with up-to-date OpenVMS information,
will be made available.

Example Library for New Features

The library SYSEXV31 contains several example programs which illustrate some of the new
features of NATURAL Version 3.1.

When you log on to library SYSEXV31 and then execute the program MENU, a menu will be
displayed from which you can select the example programs.

General Information 1

3

Compatibility

Applications that were created with NATURAL Version 2.2.1 can be executed with Version 3.1
without any conversion procedure being required, and without your having to make any
adjustments to the programs — except in the few cases of intentional minor incompatibilities
listed below.

Overview of Intended Incompatibilities

The following list provides an overview of the intentional incompatibilities introduced with
Version 3.1 (for details on each of the topics listed, refer to the pages indicated).

When a Version 2.2 application is executed with Version 3.1, these incompatibilities will cause
the application to produce better, but slightly different, results. If in these cases you wish to get
the same results as with Version 2.2, you have to adjust your applications accordingly.

� DIVIDE — with both GIVING and REMAINDER, different results for the REMAINDER
field may occur (see page 16).

� FIND — the comparison logic for multiple-value fields in the WITH clause has been
changed (see page 18).

� FIND — incorrect results for complex search condition with connected search criteria (see
page 19).

� Incomplete statement blocks — no longer allowed (see page 23).

� CATALL — error NAT4867 issued instead of NAT0082 (see page 28).

� Interception of mismatching array ranges — incorrect results will lead to runtime error
(see page 51).

� Assignment of negative numbers to date and time intercepted (see page 52).

� Comparison and assignment of variable array ranges — no longer allowed if an array range
is actually a scalar (see page 51).

� Assignments between numeric variables of the same length — different internal handling
(see page 53).

1 NATURAL Version 3.1.1 Release Notes for UNIX

4

Support of Version 2.1 Discontinued

With the release of NATURAL Version 3.1.1 for UNIX, the support of NATURAL Version 2.1
for UNIX will be discontinued. Support for Version 2.1 will end on 31 July 1998.

Known Problems

For information on problems that are known to SOFTWARE AG, but have not yet been solved
with this version of NATURAL, please refer to the section “Known Problems” in the README
file supplied on the NATURAL installation tape.

2

5

PROGRAMMING LANGUAGE

This chapter contains information on:

� new statements,

� new system variables,

� new system function,

� enhanced statements,

� SQL enhancements.

2 NATURAL Version 3.1.1 Release Notes for UNIX

6

New Statements

DEFINE WORK FILE

This statement can be used to assign a file name to a NATURAL work file.

Statements for NATURAL Remote Procedure Call

The following statements are used in conjunction with the NATURAL remote procedure call:

� CLOSE CONVERSATION — This statement enables the client to close conversations.
You can close a specific conversation, the current conversation (as identified by the new
system variable *CONVID), or all active conversations.

� OPEN CONVERSATION —This statement enables the client to open a conversation and
specify the remote subprograms to be included in the conversation.

For further information, see page 44.

Statements for NaturalX

The following statements are used in conjunction with NaturalX:

� CREATE OBJECT

� DEFINE CLASS

� INTERFACE

� METHOD

� PROPERTY

� SEND METHOD

For further information on NaturalX, see page 56.

Programming Language 2

7

New System Variables

The following new system variables are available:

System Variable Function

*CONVID Contains the conversation ID of a conversational RPC (see page 44).

*OCCURRENCE Contains, at runtime, the actual number of occurrences of an array
defined with a variable index range “(1:V)” in a parameter data area.

*ROWCOUNT Contains the number of rows deleted, updated or inserted by the last
NATURAL SQL statement (searched DELETE, searched UPDATE,
or INSERT with select-expression respectively).

New Date System Variables

The following new date system variables are available: *DAT4D, *DAT4E, *DAT4I, *DAT4J
and *DAT4U, all of which provide the year information as 4 digits. Otherwise their date
representation corresponds to that of the date system variables *DATD, *DATE, *DATI, *DATJ
and *DATU respectively.

2 NATURAL Version 3.1.1 Release Notes for UNIX

8

New System Function

SORTKEY

Several national languages contain characters (or combinations of characters) which are not
sorted in the correct alphabetical order by a sort program or database system, because the
sequence of the characters in the character set used by the computer does not always correspond
to the alphabetical order of the characters.

For example, the Spanish letter “CH” would be treated by a sort program or database system
as two separate letters and sorted between “CG” and “CI” — although in the Spanish alphabet
it is in fact a letter in its own right and belongs between “C” and “D”.

Or it may be that, contrary to your requirements, lower-case and upper-case letters are not
treated equally in a sort sequence, that letters are sorted after numbers (although you may wish
them to be sorted before numbers), or that special characters (for example, hyphens in double
names) lead to an undesired sort sequence.

In such cases, you can use the new system function SORTKEY(character-string) to convert
“incorrectly sorted” characters into other characters that are “correctly sorted” alphabetically
by the sort program or database system. The values computed by SORTKEY would then only
be used as sort criterion, while the original values would be used for the interaction with the
end-user.

When you specify the SORTKEY function in a NATURAL program, the user exit NATUSKnn
will be invoked (nn being the current language code as in the system variable *LANGUAGE).
The character-string specified with SORTKEY will be passed to the user exit. The user exit has
to be programmed so that it converts “incorrectly sorted” characters in this string into
corresponding “correctly sorted” characters. The converted character string is then used in the
NATURAL program for further processing.

The user exit is described in your NATURAL Installation and Operations Manual.

For further information on the SORTKEY function, see the NATURAL Reference Manual.

Programming Language 2

9

Enhanced Statements

CALLNAT and PERFORM
New Option AD=A

With Version 2.2, you can mark a parameter to be passed to a subprogram with AD=O
(non-modifiable) or AD=M (modifiable).

With Version 3.1, you can also mark a CALLNAT parameter with AD=A (input-only): For
remote subprograms executed via NATURAL remote procedure call (RPC) in a client/server
environment, such a parameter will not be passed to the subprogram, but receive a value from
the subprogram (see also page 46). If a subprogram is executed locally, the AD=A field will be
reset to empty before the subprogram is invoked.

For subroutines, AD=A is also possible: A PERFORM parameter marked with AD=A will be
reset before the subroutine is invoked and can be used to receive a value from the subroutine.

Internal Handling of AD=O

With Version 3.1, the internal handling of AD=O has changed. A CALLNAT/PERFORM
parameter marked with AD=O is no longer passed to the subprogram/subroutine “by reference”
(that is, via its address) but “by value”.

For details on the passing of parameters, see the CALLNAT and PERFORM descriptions in the
NATURAL Statements Manual.

2 NATURAL Version 3.1.1 Release Notes for UNIX

10

COMPRESS

The COMPRESS statement provides the following new options:

FULL With this option, the values of the source operands in their actual lengths —
that is, including leading zeros and trailing blanks — are transferred to the
target field.

Without this option, leading zeros and trailing blanks are suppressed before
the values are transferred.

NUMERIC With this option, decimal points and signs in numeric source values are also
transferred to the target field.

Without this option, decimal points and signs are suppressed before the
values are transferred.

ALL This option can be used in conjunction with the option WITH
DELIMITER(S):

Without ALL, a delimiter is placed in the target field only between values
actually transferred.

With ALL, a delimiter is also placed in the target field for each blank value
that is not actually transferred. This means that the number of delimiters in
the target field corresponds to the number of source fields minus 1. This may
be useful, for example, if the content of the target field is to be separated
again with a subsequent SEPARATE statement.

SUBSTRING This option, previously available in several other statements, is now also
available in the COMPRESS statement for both the source fields and the
target field. It allows you to transfer only parts of source fields and/or
transfer them into a specific part of the target field.

Programming Language 2

11

Example of FULL Option:

1. COMPRESS ’ABC ’ 001 INTO #TARGET WITH DELIMITER ’*’

Content of #TARGET is: ABC*1

2. COMPRESS FULL ’ABC ’ 001 INTO #TARGET WITH DELIMITER ’*’

Content of #TARGET is: ABC *001

Example of NUMERIC Option:

1. COMPRESS –123 1.23 INTO #TARGET WITH DELIMITER ’*’

Content of #TARGET is: 123*123

2. COMPRESS NUMERIC –123 1.23 INTO #TARGET WITH DELIMITER ’*’

Content of #TARGET is: –123*1.23

Example of ALL Option:

1. COMPRESS ’A’ ’ ’ ’C’ ’ ’ INTO #TARGET WITH DELIMITER ’*’

Content of #TARGET is: A*C

2. COMPRESS ’A’ ’ ’ ’C’ ’ ’ INTO #TARGET WITH ALL DELIMITERS ’*’

Content of #TARGET is: A**C*

2 NATURAL Version 3.1.1 Release Notes for UNIX

12

COMPRESS and MOVE

In order to support languages whose writing direction is from right to left, you can specify the
option PM=I in the statements COMPRESS and MOVE so as to transfer the value of a source
operand in inverse (right-to-left) direction.

Example 1:

MOVE ’XYZ’ TO #A
MOVE #A (PM=I) TO #B

Content of #B is: ZYX

Example 2:

MOVE ’XYZ’ TO #A
COMPRESS #A (PM=I) ’ABC’ INTO #B

Content of #B is: ZYX ABC

Programming Language 2

13

DEFINE DATA
The DEFINE DATA statement provides the following new options:

� DEFINE DATA CONTEXT,

� DEFINE DATA OBJECT and HANDLE OF OBJECT,

� BY VALUE and BY VALUE RESULT (in DEFINE DATA PARAMETER).

Moreover, an enhancement has been implemented which affects:

� decimal digits of constant values.

DEFINE DATA CONTEXT

DEFINE DATA CONTEXT is used in conjunction with NATURAL remote procedure call
(RPC). It is used to define variables that are to be available to multiple remote subprograms
within one conversation, without having to explicitly pass the variables as parameters with the
corresponding CALLNAT statements. See also page 44.

Only level-1 variables and redefinitions can be specified within DEFINE DATA CONTEXT;
group and view definitions, however, are not possible. The variables can also be defined in a
separate data area, that is, DEFINE DATA CONTEXT USING local/parameter-data-area is
also possible.

DEFINE DATA OBJECT and HANDLE OF OBJECT

DEFINE DATA OBJECT and HANDLE OF OBJECT are used in conjunction with NaturalX.
For further information on NaturalX, see page 56.

BY VALUE and BY VALUE RESULT (in DEFINE DATA PARAMETER)

With Version 2.2, parameters are passed to a subprogram/subroutine via their addresses (that is,
by reference); therefore the format/length of a field specified as parameter in a CALLNAT/
PERFORM statement have to be the same as the format/length of the corresponding field in the
invoked subprogram/subroutine.

Version 3.1 provides the new option “BY VALUE” in the DEFINE DATA PARAMETER
statement. With this option, you can pass parameters to a subprogram/subroutine by value; that
is, the actual parameter values (instead of their addresses) are passed to the
subprogram/subroutine. Consequently, the fields in the subprogram/subroutine need not have
the same format/length as the CALLNAT/PERFORM parameters (their formats/lengths only
have to be data transfer compatible).

2 NATURAL Version 3.1.1 Release Notes for UNIX

14

With this new option you can, for example, increase the length of a field in a
subprogram/subroutine (if this should become necessary due to an enhancement of the
subprogram/subroutine) without your having to adjust any of the objects that invoke the
subprogram/subroutine.

Example:

* Program
DEFINE DATA LOCAL
 1 #FIELDA (P5)
 ...
END–DEFINE
...
CALLNAT ’SUBP01’ #FIELDA
...

* Subprogram SUBP01
DEFINE DATA PARAMETER
 1 #FIELDB (P9) BY VALUE
END-DEFINE
...

While the “BY VALUE” option applies to parameters being passed to a subprogram/subroutine,
the new option “BY VALUE RESULT” causes parameters to be passed by value in both
directions; that is, the actual parameter values are passed from the invoking object to the
subprogram/subroutine and, on return to the invoking object, the actual parameter values are
passed from the subprogram/subroutine back to the invoking object.

Programming Language 2

15

Decimal Digits of Constant Values

If the constant value specified after CONSTANT or INIT has more digits after the decimal point
than the corresponding field, this does not lead to an error with Version 2.2. With Version 3.1,
such inconsistency leads to error NAT0094 at compilation.

Example:

DEFINE DATA LOCAL
1 #FIELD (N2) INIT <12.25> /* no longer possible with Version 3.1
END–DEFINE

A compilation option (see page 26) is provided to allow you to temporarily continue to use the
old Version 2.2 syntax.

2 NATURAL Version 3.1.1 Release Notes for UNIX

16

DIVIDE

With Version 3.1, DIVIDE statements using both the GIVING and the REMAINDER option
may in some cases — if the dividend (operand2) has more decimal positions than the result field
— give different results for the REMAINDER field. However, these results will be of greater
precision.

Note: This change will only affect programs that are newly compiled under Version 3.1.
Programs compiled under Version 2.2 and executed under Version 3.1 will not be affected.

Example:

DEFINE DATA LOCAL
 1 #RESULT (N2)
 1 #REMAIN (N4.1)
END–DEFINE
*
DIVIDE 3 INTO 10.5 GIVING #RESULT REMAINDER #REMAIN
*
** #RESULT #REMAIN
** VALUES WITH VERSION 2.2: 3 0.0
** VALUES WITH VERSION 3.1: 3 1.5
**
END

Programming Language 2

17

EJECT

To enhance the clarity of programs and avoid possible ambiguities in the source code, the
keyword LESS in Syntax 2 of the EJECT statement is no longer optional, but required.

With Version 2.2, the shortest possible form is:

EJECT operand1

With Version 3.1, it is:

EJECT LESS operand1

ESCAPE

With Version 2.2, an ESCAPE TOP or ESCAPE BOTTOM statement within an ON ERROR
statement block leads to an error at runtime. With Version 3.1, this invalid coding is already
intercepted at compilation.

Moreover, it is no longer allowed to place an ESCAPE TOP statement within an AT START OF
DATA statement block.

2 NATURAL Version 3.1.1 Release Notes for UNIX

18

FIND
Comparison Logic for Multiple-Value Fields in WITH Clause

The comparison logic for multiple-value fields in the WITH clause of the FIND statement has
been changed so as to be in line with the comparison logic in other statements (e.g. IF).

Four different forms of the FIND statement can be distinguished (the field MU in the following
examples is assumed to be a multiple-value field):

1. FIND XYZ–VIEW WITH MU = ’A’

With Versions 2.2 and 3.1, this statement returns records in which at least one occurrence
of MU has the value “A”.

2. FIND XYZ–VIEW WITH MU NOT EQUAL ’A’

With Versions 2.2 and 3.1, this statement returns records in which at least one occurrence
of MU does not have the value “A”.

3. FIND XYZ–VIEW WITH NOT MU NOT EQUAL ’A’

With Version 2.2, this statement returns records in which at least one occurrence of MU
has the value “A” (same as 1.).
With Version 3.1, this statement returns records in which every occurrence of MU has the
value “A”.

4. FIND XYZ–VIEW WITH NOT MU = ’A’

With Version 2.2, this statement returns records in which at least one occurrence of MU
does not have the value “A” (same as 2.).
With Version 3.1, this statement returns records in which none of the occurrences of MU
has the value “A”.

This means that if in Version 3.1 you newly compile existing Version 2.2 programs containing
FIND statements of the forms 3. and 4., they will return different results.

Should you in these cases wish to continue to get the same results as with Version 2.2, you have
to change the statements as follows:

3. FIND XYZ–VIEW WITH NOT MU NOT EQUAL ’A’ change to: MU = ’A’

4. FIND XYZ–VIEW WITH NOT MU = ’A’ change to: MU NOT EQUAL ’A’

Programming Language 2

19

Complex Search Condition with Connected Search Criteria

With Version 2.2, a complex search condition which combines search criteria as follows

FIND ... WITH ((search–criterion1) OR (search–criterion2)) AND
 ((search–criterion3) OR (search–criterion4))

or

FIND ... WITH ((search–criterion1) OR (search–criterion2)) AND
 ((search–criterion3) AND (search–criterion4))

leads to incorrect results if:

� search-criterion1 and search-criterion2 are both of the form:

field operator value

and at least one of the operators is not an EQUAL operator; and

� search-criterion3 and search-criterion4 are both of the form:

field = value

where field is the same field in both criteria.

With Version 3.1, this error has been corrected. This means that if in Version 3.1 you newly
compile existing Version 2.2 programs containing such FIND statements, they may return
different results.

Example:

DEFINE DATA LOCAL
 1 EMP–VIEW VIEW OF EMPLOYEES
 2 NAME
 2 BIRTH
END–DEFINE
*
FIND EMP–VIEW WITH ((NAME GT ’LYKOS’) OR (NAME = ’BAILLET’)) AND
 ((BIRTH = 610116) OR (BIRTH = 490228))
...

With Version 2.2., the above FIND statement returns all employees whose names are greater
than LYKOS — regardless of their date of birth —, as well as BAILLET (born 61–01–16).

With Version 3.1, the above FIND statement returns: MAUBERT (born 61–01–16) and
BAILLET (born 61–01–16).

2 NATURAL Version 3.1.1 Release Notes for UNIX

20

Non-Descriptor in SORTED BY Clause

It is now possible to specify in the SORTED BY clause of a FIND statement a field that is a
non-descriptor; that is, records read with a FIND statement can now also be sorted by the values
of non-descriptor fields.

Note: This feature requires ADABAS Version 3.1 (or above).

FIND, GET, HISTOGRAM, READ and STORE
With Version 2.2, it is possible in a non-NATURAL SECURITY environment in reporting mode
to specify an ADABAS file number as view-name.

With Version 3.1, it is no longer possible to specify an ADABAS file number as view-name. This
will lead to a compilation error (NAT0980).

FIND and READ
To support repositioning within database loops, the statements FIND and READ provide a new
option “STARTING WITH ISN = operand”, which can be used for access to ADABAS
databases.

This option may be used for repositioning in a FIND/READ loop whose processing has been
interrupted, to easily determine the next record with which processing is to continue. This is
particularly useful if the next record cannot be identified uniquely by any of its descriptor
values. It can also be useful in a distributed client/server application where the reading of the
records is performed by a server program while further processing of the records is performed
by a client program, and the records are not processed all in one go, but in batches.

HISTOGRAM and READ
The statements HISTOGRAM and READ provide new options for reading records in
descending sequence in order to support the “read backwards” feature of ADABAS and SQL
databases.

Two options are possible:

� Static backward reading — by specifying the keyword DESCENDING.

� Variable forward/backward reading — by specifying the keyword VARIABLE followed
by a variable (format/length A1) which determines the reading direction. The variable can
contain the value “A” (for “ascending”) or “D” (for “descending”). This allows you to
change the reading sequence from “ascending” to “descending”, and vice versa.

Programming Language 2

21

The default sequence is ascending. The new keyword ASCENDING is provided to allow you
to explicitly specify ascending sequence.

Note for ADABAS:
For READ statements, the “read backwards” feature requires ADABAS Version 3.1 (or above)
or ADABAS Version 6.1 (or above) on mainframes (for Version 6.1, the ZAPs distributed with
early warnings ADA612–007 and ADA613–002 respectively have to be applied).
For HISTOGRAM statements, the “read backwards” feature requires ADABAS Version 3.1 (or
above) or ADABAS Version 6.2 (or above) on mainframes.

Example of DESCENDING Option:

READ EMPLOYEES IN DESCENDING SEQUENCE BY NAME = ’SMITH’

This statement returns all names in descending sequence, starting with the name “SMITH”.

Example of VARIABLE Option:

DEFINE DATA LOCAL
1 #DIRECTION (A1) INIT <’A’> /* ’A’ = ASCENDING
1 #EMPVIEW VIEW OF EMPLOYEES
 2 NAME
 ...
END–DEFINE
...
IF *PF–KEY = ’PF7’
 THEN MOVE ’D’ TO #DIRECTION
END–IF
READ #EMPVIEW IN VARIABLE #DIRECTION SEQUENCE BY NAME = ’SMITH’
 ...
END–READ
...

2 NATURAL Version 3.1.1 Release Notes for UNIX

22

MOVE
With Version 2.2, if the value to be moved with MOVE RIGHT JUSTIFIED is longer than the
target field, the value will be truncated on the right-hand side before being placed into the target
field.

With Version 3.1, if the value to be moved with MOVE RIGHT JUSTIFIED is longer than the
target field, the value (after the removal of trailing blanks) will be truncated on the left-hand
side before being placed into the target field.

Example:

DEFINE DATA LOCAL
 1 #SOURCE (A6) INIT <’ ABC ’> /* 1 leading blank and 2 trailing blanks
 1 #TARGET (A3)
END–DEFINE
*
MOVE RIGHT JUSTIFIED #SOURCE TO #TARGET
*
** CONTENTS OF #TARGET – WITH VERSION 2.2: ’ AB’
** – WITH VERSION 3.1: ’ABC’
END

PRINT
It is no longer possible to specify the LS parameter with the PRINT statement (as it has no effect
anyway). With Version 2.2, this does not lead to an error; with Version 3.1, it will lead to error
NAT0394.

MASK Option (Logical Condition)
With the MASK option, you can specify the new character “/” (slash) to check if a value ends
with a specific character or string of characters.

Example:

IF #FIELD = MASK (*’E’/)

This condition will be true if there is either an “E” in the last position of the field, or the last “E”
in the field is followed by nothing but blanks.

Programming Language 2

23

SUBSTRING Option (Various Statements)

With Version 2.2, invalid or inconsistent values for the starting position and/or the length of the
field portion in a SUBSTRING option lead to errors at runtime.

With Version 3.1, such invalid/inconsistent values in a SUBSTRING option are already
intercepted at compilation (error NAT0471).

Incomplete Statement Blocks (Various Statements)

With Version 2.2, an empty statement block (for example, a FOR or REPEAT processing loop
that does not contain any statements) may in some cases not lead to a compilation error.

With Version 3.1, this inconsistency has been corrected, and any empty — that is, syntactically
incomplete — statement block will lead to an error at compilation. If you wish a statement block
intentionally to perform no function, insert an IGNORE statement.

Database Field Names (any Database Statement)

With Version 2.2, two-character database field names are interpreted as field short names (as
used by the underlying database system), whereas other database field names are interpreted as
field long names (as defined for NATURAL in the corresponding DDM). For some database
systems, this may lead to long names erroneously interpreted as short names.

With Version 3.1, it is possible to set an option with the new system command COMPOPT (see
page 26) so that database field names will always be interpreted as long names, regardless of
their length. This will avoid possible misinterpretations of database field names in programs.

2 NATURAL Version 3.1.1 Release Notes for UNIX

24

SQL Enhancements

Flexible SQL

NATURAL’s flexible SQL has been enhanced to support “dynamic SQL”: the flexible SQL can
contain a variable which contains SQL text; at runtime, the variable will then be replaced by
the SQL text.

SELECT Statement

The SELECT statement provides the following enhancements:

� Subqueries can now be specified in the FROM clause of the SELECT statement.

� The new operators EXCEPT and INTERSECT can be used to perform set operations on
the results of two or more select-expressions.

PROCESS SQL Statement

With the PROCESS SQL statement, the new SQLCONNECT options OS_USERID and
OS_PASSWORD can be specified for the purpose of operating system authentication (see the
ENTIRE ACCESS Version 2.2 documentation for details).

Date and Time Formats

The NATURAL formats date (D) and time (T) can now be used with ENTIRE ACCESS. They
will be converted into the corresponding database-dependent formats (see the ENTIRE
ACCESS Version 2.2 documentation for details).

User-Definable Character in Names of Indicator Fields

With Version 2.2, the character “@” is used within the field names of length-indicator fields and
null-indicator fields.

With Version 3.1, it is possible to use another character instead. The appropriate character
assignment is made in the configuration file NATCONV.INI.

3

25

SYSTEM COMMANDS AND UTILITIES

This chapter contains information on:

� new system commands,

� enhanced system commands,

� the new SYSNCP utility — command processor,

� the new SYSUNLD utilities — unloading and loading,

� the new NATTERMCAP utility — terminal capabilities,

� the new remote debugging utility,

� the NATPARM utility,

� the SYSDDM utility,

� the SYSTRANS utility.

3 NATURAL Version 3.1.1 Release Notes for UNIX

26

New System Commands

COMPOPT — Compilation Options
This new system command allows you to set various options which will affect the way in which
a NATURAL object is compiled. The following options are available:

Database Short Field Names (DBSHORT)

This option determines how database field names are interpreted in NATURAL programs. Two
options are possible:

� Database field names are considered long names (as defined in the corresponding DDM)
— except 2-character field names, which are considered short names (as used by the
underlying database system). This is the default.

� All database field names are considered long names, regardless of their length. This avoids
possible misinterpretations of database field names in programs.

Note: It is also possible to set this option with the new profile parameter DBSHORT.

Global Format IDs (GFID)

This option allows you to control NATURAL’s generation of global format IDs so as to influence
ADABAS’s performance for format buffer translations.

Note: It is also possible to set this option with the new profile parameter GFID.

Compatibility Option — Allow Old Version 2.2 Syntax (V22COMP)

The following inconsistent syntax construction, which is not intercepted by Version 2.2, leads
to a syntax error with Version 3.1: DEFINE DATA — inconsistent number of decimal digits in
constant value (see page 15).

To allow you a smooth transition from Version 2.2 to Version 3.1, the compatilibity option of
COMPOPT can be set: the above syntax construction will then not lead to a syntax error. Thus
you will be able to compile your existing programs under Version 3.1 until you have adjusted
them to the Version 3.1 requirements.

Notes:
It is also possible to set this option with the new profile parameter V22COMP.

The compatibility option (and the V22COMP parameter) will be available only for a limited
period of time to allow you a smooth transition to the Version 3.1 syntax. It will be removed again
with one of the next releases of NATURAL.

System Commands and Utilities 3

27

DEBUG — Invoke Remote Debugging Utility
With this new system command, you invoke the new remote debugging utility (see page 31).

LASTMSG — Information on Last Error Situation
With this new system command, you can display additional information about the error situation
which has occurred last.

When NATURAL displays an error message, it may in some cases be that this error is not the
actual error, but an error caused by another error (which in turn may have been caused by yet
another error, etc.) In such cases, the LASTMSG command allows you to trace the issued error
back to the error which has originally caused the error situation.

When you enter the LASTMSG command, you will get — for the error situation that has
occurred last — the error message that has been displayed, as well as all preceding (not
displayed) error messages that have led to this error.

When you select one of these messages, you will get the following information on the
corresponding error: error number; number of the line in which the error occurred; name, type
and level of the object that caused the error; name, database ID and file number of the library
containing the object; error class (error issued by NATURAL or by user application); error type
(runtime, syntax, command execution, session termination, program termination, remote
procedure call); date and time at which the error occurred.

LIST COUNT — Count Number of Objects in Library
With this new system command, you can have the number of NATURAL objects in your current
library listed. The following command options are available:

LIST COUNT will display the total number of objects.

LIST COUNT * will display the number of objects broken down by object types.

LIST COUNT name< will display the number of objects whose names are less/equal name.

LIST COUNT name> will display the number of objects whose names are greater/equal name.

LIST COUNT name* will display the number of only those objects whose names begin with name.

NATLOAD, NATUNLD, SYSUNLD — Unloading and Loading Utilities
These new system commands are used to invoke the new utilities of the same names and the
library in which they are contained; see page 30.

3 NATURAL Version 3.1.1 Release Notes for UNIX

28

REGISTER and UNREGISTER — NaturalX

These two new system commands are used in conjunction with NaturalX. For information on
NaturalX, see page 56.

Enhanced System Commands

CATALL

With Version 2.2, error NAT0082 is issued if no object is found that meets the CATALL selection
criteria.

With Version 3.1, error NAT4867 is issued in this situation.

LIST

The LIST command provides the new option DIRECTORY, which allows you to display
directory information about an object.

TECH

The TECH command has been enhanced to provide additional error information.

XREF

Apart from the existing values, you can specify the new value “DOC”. XREF=DOC
corresponds to XREF=FORCE, except that no cross-reference data will be generated.

System Commands and Utilities 3

29

New SYSNCP Utility — Command Processor

The NATURAL command processor is used to define and control navigation within an
application. It consists of two parts:

� The utility SYSNCP. With this utility, you define commands (that is, combinations of
keywords) and the actions to be performed in response to these commands. From your
definitions, SYSNCP generates decision tables which determine what happens when a
user enters a command.

� The statement PROCESS COMMAND. This statement is used to invoke the command
processor within a NATURAL program. In the statement you specify the name of the
processor to be used to handle the command input by a user at that point.

The benefits of the NATURAL command processor may be summarized as follows:

� Less Coding — Instead of having to repeatedly program lengthy and identically structured
statement blocks to handle the processing of commands, you only have to specify a
PROCESS COMMAND statement that invokes the command processor; the actual
command handling need no longer be specified in the source code. This considerably
reduces the amount of coding required.

� More Efficient Command Handling — As command handling is defined in a
standardized way and in one central place, the work involved in creating and maintaining
the command-processing part of an application can be done much faster and much more
efficiently.

� Improved Performance — The NATURAL command processor has been designed with
particular regard to performance aspects: it allows NATURAL to process commands as
fast as possible and thus contributes to improving the performance of your NATURAL
applications.

The various features of the NATURAL command processor and the functions of the SYSNCP
utility are described in the chapter Command Processor Maintenance of the NATURAL User’s
Guide for OpenVMS and UNIX. The PROCESS COMMAND statement is described in the
NATURAL Statements Manual.

3 NATURAL Version 3.1.1 Release Notes for UNIX

30

New SYSUNLD Utilities — Unloading and Loading

The new library SYSUNLD contains two new utilities: NATUNLD and NATLOAD.

� NATUNLD is used to unload NATURAL programming objects, error messages and
DDMs from system files onto a work file.

� NATLOAD is used to load NATURAL programming objects, error messages and DDMs
from a work file into system files.

NATUNLD generates variable-length records with a maximum of 252 characters per record.
These records are written onto NATURAL work file 1 in a format which can be used for loading
with NATLOAD. NATLOAD reads the records from NATURAL work file 1. NATLOAD can
only load work files created by NATUNLD.

In addition, NATUNLD allows you to write delete instructions for specific objects to the work
file. When the work file is read with NATLOAD, these instructions cause the objects concerned
to be deleted from the target environment.

The utilities NATUNLD and NATLOAD are described in the NATURAL Installation and
Operations Manual for OpenVMS and UNIX.

System Commands and Utilities 3

31

New NATTERMCAP Utility — Terminal Capabilities

The new utility NATTERMCAP allows you to create, modify and test the terminal capabilities
described in the terminal database SAGtermcap.

The NATTERMCAP utility is described in the NATURAL Installation and Operations Manual
for OpenVMS and UNIX.

New Remote Debugging Utility

NATURAL Version 3.1.1 provides a new utility which allows you to debug your NATURAL
applications remotely.

You install this utility on a Windows NT 4.0 computer in your network, and then start your
NATURAL on UNIX with the profile parameters RDACTIVE, RDNOTE and RDPORT. Then
you can invoke the debugging utility from your UNIX computer with the NATURAL system
command DEBUG.

The debugging utility provides a comfortable graphical user interface.

For further information see the NATURAL Debugging Manual.

3 NATURAL Version 3.1.1 Release Notes for UNIX

32

NATPARM Utility

Revised User Interface

The user interface of the NATPARM utility has been revised to be more consistent and
user-friendly.

SYSDDM Utility

Generation of Null-Value Indicator Fields

The SYSDDM utility has been enhanced to support the generation of null-value indicator fields
for ADABAS files (see page 49).

SYSTRANS Utility

The SYSTRANS utility command provides the following enhancements:

� The use of SYSTRANS can now be controlled and restricted via NATURAL SECURITY.

� In addition to the existing objects, you can now also transfer command processors.

� Instead of making the selection of objects to be transferred by object types, you can now
also transfer objects by library.

� Within SYSTRANS, you can now also invoke functions via direct commands.

� A new user exit allows you to invoke SYSTRANS functions from within your NATURAL
applications.

4

33

PROFILE PARAMETERS

This chapter describes the changes concerning the NATURAL profile parameters. The
following information is provided:

� file numbers,

� new profile parameters,

� enhanced profile parameters.

File Numbers

In accordance with the enhancements of ADABAS Version 3.1, you can now specify values
above 255 for file numbers (that is, file numbers can now be from 1 to 5000).

This applies to all profile parameters in which you can specify an ADABAS file number — with
the following exception: if you use the “active cross-references” function of PREDICT Version
3.4 (or below), file numbers specified for FNAT and FUSER cannot be above 255 (due to
restrictions inherent in that PREDICT version). Therefore it is at present not possible, to specify
such values with the parameters FNAT and FUSER.

4 NATURAL Version 3.1.1 Release Notes for UNIX

34

New Profile Parameters

The following new profile parameters are available with Version 3.1. The default values of these
parameters are set so as to be compatible with the behaviour of Version 2.2.

ACTPOLICY, AUTOREGISTER, COMSERVERID — NaturalX

These new parameters are used in conjunction with NaturalX. For information on NaturalX, see
page 56.

CM — Suppress Command Mode

This new parameter allows you to suppress the NATURAL command mode (MORE). As a
result, the MORE line will be write-protected (no input possible).

DBSHORT — Interpretation of Database Short Names

This new parameter corresponds to an option of the new system command COMPOPT (see
page 26).

DFOUT — Date Format for Output

This new parameter determines the format of date values for output; it is used in conjunction
with year 2000 (see page 40).

DFSTACK — Date Format for Stack

This new parameter determines the format of date values placed on the stack; it is used in
conjunction with year 2000 (see page 40).

DFTITLE — Date Format for Default Report Title

This new parameter determines the format of date values output in NATURAL default report
titles as produced by DISPLAY, WRITE or PRINT statements; it is used in conjunction with
year 2000 (see page 40).

Profile Parameters 4

35

ESCAPE — Disable Terminal Commands “%%” and “%.”
This new parameter allows you to disable the terminal commands “%%” and “%.”. These
terminal commands will then be ignored; that is, it will not be possible to leave the currently
active NATURAL program by entering ”%%” or “%.”.

FCDP —
Suppress Filler Character for Dynamically Protected Input Fields

This new parameter allows you to suppress the display of filler characters for input fields that
have been made write-protected dynamically (that is, to which the attribute AD=P has been
assigned via a control variable).

With Version 2.2, a dynamically protected input field is displayed filled with filler characters
— which may suggest to the users that they could enter something in the field.

With Version 3.1, you can avoid this by setting FCDP=OFF: dynamically protected input fields
will then be displayed filled with blanks instead of filler characters.

GFID — Generation of Global Format Identifiers
This new parameter corresponds to an option of the new system command COMPOPT (see
page 26).

KEY — Value Assignments to PA, PF and CLEAR Keys
This new parameter allows you to assign values to the keys PA1 to PA3, PF1 to PF24 and to the
CLEAR key on video terminals. The value assigned to each key can be a NATURAL system
command or a user command (user program).

Assignments made with this parameter are only valid from within the NATURAL Direct
Command window.

MSGSF — Avoid Truncation of Message Texts in Windows
By default, a NATURAL system error message consists of: the name of the program and the
number of the line that caused the error, followed by the actual text of the message. Depending
on the size of the window in which the message is displayed, the actual text may be truncated.

To avoid this truncation, the new parameter MSGSF can be set so that only the actual message
text — without program name and line number — itself will be displayed.

4 NATURAL Version 3.1.1 Release Notes for UNIX

36

OPF — Suppress Overwriting of Protected Fields by Helproutines

With Version 2.2, a helproutine assigned to a field can overwrite the field’s content, even if the
field is write-protected (AD=P).

With Version 3.1, the new parameter OPF allows you to suppress this, so that helproutines
cannot overwrite the contents of write-protected fields.

RDACTIVE, RDNODE and RDPORT — Remote Debugging

These new parameters are used in conjunction with the new remote debugging utility (see
page 31).

REINP — Automatic REINPUT for Invalid Data

By default, NATURAL automatically issues an internal REINPUT statement if invalid data
have been entered.

With the new parameter REINP, you can switch this mechanism off. This allows you to handle
such input errors yourself in your application.

V22COMP — Version 2.2 Compatibility

This new parameter corresponds to an option of the new system command COMPOPT (see
page 26).

YSLW — Year Sliding Window

This new parameter is used to define a year sliding window; it is used in conjunction with
year 2000 (see page 41).

Parameters for Remote Procedure Call (RPC)

In conjunction with RPC, several new profile parameters are available. These are grouped under
“Remote Procedure Call”; see the NATURAL Installation and Operations Manual for OpenVMS
and UNIX for details.

Profile Parameters 4

37

Enhanced Profile Parameters

DD
The possible range of values is now from –32767 to +32767.

FDIC, FNAT, FSEC, FUSER, LFILE
In addition to the existing values, you can specify the new option “Read Only” to disable
modifications in the file. Thus it is possible to set read-only access for individual system files.
(With Version 2.2, read-only access can only be set for all system files with the profile parameter
ROSY.)

TD
With Version 2.2, you can specify the time differential in intervals of 30 minutes. With Version
3.1, you can specify it in intervals of 1 minute.

TF
For the production-DBID and/or production-FNR , you can specify an asterisk (*):

� If you specify it for both, all production DBIDs and FNRs will be translated to the specified
test-DBID and test-FNR.

� If you specify it for the production-FNR only, all FNRs in the specified production-DBID
will be translated to the specified test-DBID and test-FNR.

The test and production databases affected must be of the same database type.

USIZE
With Version 2.2, the possible range of values is 500 to 2048 KB.

With Version 3.1, the possible range of values is 1 to 1024 MB.

XREF
Apart from the existing values, you can specify the new value “DOC”. XREF=DOC
corresponds to XREF=FORCE, except that no cross-reference data will be generated.

38

5

39

MISCELLANEOUS

This chapter contains information on:

� support of year 2000,

� NATURAL remote procedure call (RPC),

� ADABAS,

� improving SQL database access performance,

� search sequence for objects to be executed,

� array operations with variable index ranges,

� error messages,

� assignment of negative numbers to date/time intercepted,

� suppressing of zero display for time fields,

� assignments between numeric variables of same length,

� dump generation with CATALL,

� loading of datasets with INPL.

5 NATURAL Version 3.1.1 Release Notes for UNIX

40

Support of Year 2000

The “Year 2000” Problem

Numerous applications use a 2-digit format instead of a 4-digit format for the representation of
year information. This means that, for example, 24th December 1996 is represented as
“24-12-96”. This might lead to misinterpretations of dates in the next century, because 24th
December 2000 would be represented as “24–12–00” — which could not be distinguished from
the representation of 24th December 1900.

The following sections describe what is provided with NATURAL Version 3.1 to help solve this
problem.

In addition, Chapter 5 of the NATURAL Programming Guide contains a new section on the
processing of date information.

Handling Date Information with IS Option and VAL Function

With Version 2.2, the IS option, which is used to check whether the contents of an alphanumeric
field can be converted to another format, can only be applied to format D if the value checked
contains 2-digit year information. The mathematical function VAL, which is used to extract a
numeric value from an alphanumeric field, only accepts date information that corresponds to
the rules for the IS option; this means that a date value which contains 4-digit year information
cannot be extracted.

With Version 3.1, the IS option and the VAL function accept both 2- and 4-digit year
information.

Default Edit Mask for Date — The DF Parameter

If the value of a date field is converted to alphanumeric format (for example, in a MOVE,
DISPLAY, PRINT, WRITE or INPUT statement) and no edit mask is specified for the
conversion, the default date format as determined by the profile parameter DTFORM is used
as edit mask, but only providing 2 digits for the year information. This means that even if the
date value contained the century, this information would be lost during the conversion.

The same is true for the input validation of a date variable used in an INPUT statement. If no
edit mask is specifed, the input is validated according to the default date format determined by
the DTFORM parameter, with 2 digits for the year information.

Miscellaneous 5

41

With Version 2.2, both the above effects can be avoided by explicitly specifying edit masks.
However, a change of the format of alphanumeric date representations would then no longer be
possible by simply changing the setting of the DTFORM parameter; instead, it would
necessitate the adjustment of the specified edit masks in the programs.

With Version 3.1, the new session parameter DF allows you to specify whether the length of a
date when converted to alphanumeric representation is to be 8 or 10 characters (and with 2- or
4-digit year information). The DF parameter can be specified with the FORMAT statement and
various other statements (at statement and field level), and it is evaluated at compilation. This
allows you to gradually change your applications to use 4-digit year representations and at the
same time continue to make use of the flexibility provided by the DTFORM parameter.

Date System Variables

The NATURAL date system variables *DATD, *DATE, *DATI, *DATJ and *DATU, which
contain the current date in various formats, all provide the year information as 2-digits.

With Version 3.1, corresponding new date system variables providing 4-digit year information
are available (see page 7).

Date as Selection Criterion in Utilities

The NATURAL utilities NATUNLD, NATLOAD and SYSMAIN allow you to specify a date
as selection criterion.

With Version 2.2, the date can only be specified with 2 digits for the year, and the current century
is internally appended to the specified date.

With Version 3.1, the above utilities accept dates with both a 2- and a 4-digit year specification
as selection criterion.

“Sliding Window” — The YSLW Parameter

With the new profile parameter YSLW, you can set a so-called “sliding window”, which allows
you to continue using 2-digit year representations and at the same time ensure that any 2-digit
year value can be uniquely related to a specific century.

5 NATURAL Version 3.1.1 Release Notes for UNIX

42

Date Format for Output — The DFOUT Parameter

The new session/profile parameter DFOUT allows you to control the format in which date fields
are output with INPUT, DISPLAY, PRINT and WRITE statements.

For date fields which are displayed with the above statements and for which neither an edit mask
is specified nor a DF parameter applies, the DFOUT parameter determines the format in which
the field values are displayed:

� with a 2-digit year component and delimiters,

� with a full 4-digit-year component and no delimiters.

The lengths of the date fields are not affected by the DFOUT setting, as either date value
representation fits into an 8-byte field.

The DFOUT parameter can be set in the NATURAL parameter file, dynamically when
NATURAL is invoked, or with the system command GLOBALS. It is evaluated at runtime.

Date Format for Stack — The DFSTACK Parameter

The new session/profile parameter DFSTACK allows you to control the format in which the
values of date variables are placed on the stack (via a STACK, RUN or FETCH statement).
Three options are possible:

� Date values are stacked with a full 4-digit year component and no delimiters.

� Date values are stacked with a 2-digit year component and delimiters.

� Date values are stacked with a 2-digit year component and delimiters; in addition, a change
in the century will be intercepted: when a value is read from the stack, the century is either
assumed to be the current one or determined by the YSLW parameter (see above); if this
would lead to the century being different from that of the original date value, a runtime
error will be issued (during the stacking process).

The DFSTACK parameter only applies to date fields for which no DF parameter is specified.
It can be set in the NATURAL parameter file, dynamically when NATURAL is invoked, or with
the system command GLOBALS. It is evaluated at runtime.

Miscellaneous 5

43

Date Format for Default Report Title — The DFTITLE Parameter

The new session/profile parameter DFTITLE allows you to control the format in which the date
values is output in NATURAL default report titles as produced by DISPLAY, WRITE or PRINT
statements. For details, see your NATURAL Installation and Operations Manual.

Note: At present, this parameter is only described in the NATURAL Installation and Operations
Manual, but not in other parts of the NATURAL documentation where it ought to be described,
too; this inconsistency will be rectified with the next edition of the NATURAL documentation.

5 NATURAL Version 3.1.1 Release Notes for UNIX

44

NATURAL Remote Procedure Call (RPC)

Programming Language Enhancements for Conversational RPCs

With Version 3.1, conversational RPC support is provided for client/server communication
(support of remote CALLNAT).

For conversational RPCs, the following enhancements to the NATURAL programming
language are available:

� OPEN CONVERSATION — This new statement allows the client to get a server for
exclusive use to execute a number of services (subprograms) within one server process.
This exclusive use is called conversation. With OPEN CONVERSATION, you open a
conversation and specify the names of the subprograms which are to be involved in this
conversation. OPEN CONVERSATION will assign a unique ID that identifies the
conversation to the system variable *CONVID (see below).
Several conversations can be open at the same time. To switch from one open conversation
to another, you assign the corresponding conversation ID to the *CONVID.

� CLOSE CONVERSATION — This new statement allows the client to close
conversations. You can close the current conversation, one specific other open
conversation, or all open conversations (see also page 6).

� DEFINE DATA CONTEXT — The new CONTEXT clause of the DEFINE DATA
statement is used to define the data that are to be available to several subprograms within
a conversation; see page 45 for details.

� *CONVID — This new system variable contains the conversation ID of a conversational
RPC. The value of *CONVID is set by the OPEN CONVERSATION statement.
NATURAL RPC will examine the current conversation for the subprogram to be executed
remotely and will pass it to the appropriate server process.

Miscellaneous 5

45

DEFINE DATA CONTEXT

With Version 3.1, it is possible for several remote subprograms within one conversation to share
the same data without having to explicitly pass these data as parameters. The fields to be
available to the subprograms are defined as context variables in a DEFINE DATA CONTEXT
statement in each subprogram in which they are to be available.

A context variable is referenced by its name, and its content is shared by all subprograms
referring to that name within one conversation.

Each conversation has its own set of context variables. Context variables cannot be shared by
different conversations.

The context variables will be reset to their initial values when an OPEN CONVERSATION
statement is executed or a single (non-conversational) remote CALLNAT is performed.

Note: One of the great advantages of using NATURAL for client/server applications is that you
can develop and test your applications locally, and then distribute them for production. This
requires that subprograms using context variables behave the same way whether they be
executed locally or remote. For remote conversations this is given, as one server may have only
one open conversation at a time and consequently all context variables belong to this
conversation; for local conversations, NATURAL precludes any confusion between context
variables of the same names belonging to different conversations (by internally identifying the
variables not only by their names but also by their respective conversation IDs).

RPC Without Stub
With Version 2.2, you have to generate a stub for every subprogram to be executed remotely.

With Version 3.1, if a stub for a remote subprogram does not exist, NATURAL RPC will
automatically generate the necessary data which would normally be supplied by the stub — and
invoke the remote subprogram as if a stub existed for it. This means that you no longer need to
generate stubs for remote subprograms.

Nonetheless it is possible to continue to use existing stubs.

Remote Directory
With Version 2.2, the locations (server addresses) of the remote subprograms have to be defined
in a local directory for each RPC client application. For multiple clients using the same remote
subprograms this means that identical directory information appears — and has to be
maintained — on every single client.

5 NATURAL Version 3.1.1 Release Notes for UNIX

46

With Version 3.1, you can define one central remote directory on the server; this remote
directory can be accessed by all clients. This drastically reduces the maintenance effort of
directory information. Moreover, the remote directory provides a single central place of
reference to all services available in your client/server environment.

The remote directory server is implemented as a NATURAL subprogram. A sample of this
subprogram, named RDSSCDIR, is provided in the library SYSRPC. It reads the required
directory information from a work file. The interface of the subprogram is documented so that
you can develop your own remote directory service.

If a remote subprogram is not found in the local directory, it will be sought in the remote server
directory (by executing an internal remote CALLNAT). An internal directory cache minimizes
the access to the remote directory. The cache information is controlled by an expiration date set
by the remote directory server.

Remote Error Handling
With Version 2.2, NATURAL errors that occur in remote subprograms on the server are handled
directly by the error transaction at level 1 of the application, to which the actual error
information is not always available.

With Version 3.1, errors that occur in remote subprograms on the server are handled in the same
way as errors in subprograms invoked locally; that is, the same ON ERROR handling
mechanisms apply.

Reduced Data Transfer Load
With Version 3.1, the AD= specifications of CALLNAT parameters (see also page 9) are also
evaluated for remote subprograms in a client/server environment:

� AD=M parameters are passed from the client to the server and back again.

� AD=O parameters are only passed from the client to the server, but not back.

� AD=A parameters are only passed from the server back to the client.

This reduces the load of data to be sent.

Logon Handling and Support of NATURAL SECURITY
With Version 2.2, a remote subprogram will always be sought in the current library on the server;
however, the client has no control over which library is the current one on the server when the
remote CALLNAT is performed.

Miscellaneous 5

47

With Version 3.1, NATURAL RPC also supports NATURAL SECURITY in client/server
environments, and at the same time allows clients to set the current library on a server.

NATURAL RPC’s Server Maintenance on the client provides a new option “Logon”, which can
be set for individual servers, or for a node so as to apply to all servers belonging to that node.

If the “Logon” option is set to “yes” and a remote CALLNAT is performed, the user’s ID and
password as well as the current library ID from the client will be passed to the server along with
the CALLNAT request.

The user ID and password are established as follows:

� If the client runs under NATURAL SECURITY, the user ID and password from the
NATURAL SECURITY logon on the client will be encrypted into a security token and
passed to the server.

� For non-NATURAL SECURITY clients, a user exit will be provided which the user has
to execute and which will prompt the user to specify a user ID and password — which will
then be passed to the server.

The server will verify the user ID and password; and before executing the requested subprogram,
NATURAL will then perform a logon on the server using the current library ID from the client.

If the server runs under NATURAL SECURITY, the user ID and password from the client will
be verified against the corresponding user security profile on the server, and the logon to the
requested library and the execution of the subprogram will be performed according to the
corresponding NATURAL SECURITY library and user profile definitions on the server.

After the execution of the subprogram, the library used before the CALLNAT request will be
made current again on the server.

In the case of a conversational RPC (see also page 44), the first CALLNAT request within the
conversation will set the library ID on the server; and the CLOSE CONVERSATION statement
will reset the library ID on the server to the one before the first request of the conversation.

For compatibility, Version 3.1 servers still support remote CALLNATs from clients where the
“Logon” option is not set.

To enforce the “Logon” option — that is, if you want a server to accept only requests from clients
where the “Logon” option is set — the new profile parameter LOGONRQ is provided, which
will be evaluated when you start the server.

5 NATURAL Version 3.1.1 Release Notes for UNIX

48

Passing Floating-Point Parameters to/from Version 2.2

If floating-point parameters are passed in a remote procedure call to/from a partner (client or
server) whose NATURAL version is 2.2, the profile/session parameter DC in this Version 2.2
NATURAL must be set to “.” (period); otherwise, conversion errors will occur.

Sharing the FUSER System File Between Versions 2.2 and 3.1

If you use an existing FUSER system file for both NATURAL Versions 2.2 and 3.1, and any of
the user libraries on that FUSER system file contains a Version 2.2 program NATCLT3, you have
to move this program to the library SYSTEM on the FUSER system file. Otherwise, NATURAL
Version 3.1 RPC will not function correctly.

Miscellaneous 5

49

ADABAS

The following ADABAS features are supported with NATURAL Version 3.1:

� Support of null values in analogy to SQL databases: for database fields that can contain
null values, corresponding null-value indicator fields are generated in the DDM. These
null-value indicator fields are evaluated when a FIND or READ statement is executed, and
can be queried in a FIND statement.

� Support of the “read backwards” feature (see also page 20).

� Support of repositioning within database loops (see also page 20).

� Support of sorting by non-descriptors (see also page 20).

� The maximum number of occurrences of a periodic group has been increased from 99 to
191.

� Support of the “security by value” feature.

� Support of file numbers from 1 to 5000.

Improving SQL Database Access Performance

By default, the NATURAL SQL driver manages a table with the 16 most recently used
NATURAL statements. All statements in this table are marked as prepared, which indicates that
the statements can be executed immediately without being compiled by the database.

To ensure maximum performance, the dynamic parameters SQLRELCMD and
SQLMAXSTMT are provided with NATURAL Version 3.1. These parameters configure the
handling of the SQL driver’s statement table. SQLRELCMD determines when commands are
to be released from the SQL statement table. SQLMAXSTMT determines the size of the
statement table (possible values 1 to 64; default 16).

See the NATURAL Installation and Operations Manual for OpenVMS and UNIX for details on
tuning SQL database access.

5 NATURAL Version 3.1.1 Release Notes for UNIX

50

Search Sequence for Objects to be Executed

Search for Objects to be Executed from User Libraries

The sequence in which user-written NATURAL objects that are to be executed from the FUSER
system file are searched for, has been enhanced: if an object cannot be found on the FUSER file,
the library SYSTEM on the system file FNAT is also searched for it. The search sequence is:

� current library (as defined by system variable *LIBRARY–ID),

� steplibs (in sequence as specified in NATURAL SECURITY profile of current library),

� default steplib (as defined by system variable *STEPLIB),

� library SYSTEM on FUSER system file,

� library SYSTEM on FNAT system file (� new!).

Search for Objects to be Executed from System Libraries

The sequence in which NATURAL objects that are to be executed from the FNAT system file
are searched for, has been enhanced: if an object cannot be found on the FNAT file, the library
SYSTEM on the system file FUSER is also searched for it. The search sequence is:

� current “SYS” library (as defined by system variable *LIBRARY–ID),

� steplibs (in sequence as specified in NATURAL SECURITY profile of current library),

� default steplib (as defined by system variable *STEPLIB),

� library SYSTEM on FNAT system file,

� library SYSTEM on FUSER system file (� new!).

Thus, it is possible to make user exits generally available without having to keep copies of them
on both system files. It will be sufficient to provide them in one location, namely on the FUSER
system file.

Miscellaneous 5

51

Array Operations with Variable Index Ranges

With Version 3.1, the handling at runtime of operations involving arrays with variable index
ranges has been improved to avoid incorrect/inconsistent results. This affects the following:

Interception of Mismatching Array Ranges
With Version 2.2, some array operations using variable index ranges may lead to incorrect
results if the array ranges do not match at runtime.

With Version 3.1, once the actual values are assigned to the variables in the index at runtime
and the actual index ranges are thus determined, the actual range is compared with the syntax
rules for constant index ranges: if the same construction using constant index ranges would lead
to an error at compilation, an error will be issued at runtime (NAT1317).

Consequently, possible incorrect results that may have gone unnoticed with Version 2.2 will be
intercepted by a runtime error with Version 3.1.

Comparison and Assignment of Variable Array Ranges

With Version 3.1, a comparison or assignment involving arrays with variable indexes will lead
to an error at runtime (NAT1317) if an array range turns out to be actually a scalar once the actual
values are assigned to the index variables.

With Version 2.2, such a comparison or assignment is allowed, but it is not consistent with the
handling of constant scalars (as shown in the following example).

Example:

Version 2.2:

1. IF #A(i:j) = #B(m) is resolved as: IF #A(i) = #B(m) OR #A(j) = #B(m)

2. IF #A(i:j) = #B(m:n) is resolved as: IF #A(i) = #B(m) AND #A(j) = #B(n)

This means that if the values of “m” and “n” are equal, comparison 2. is resolved inconsistently.

Version 3.1:
If the values of “m” and “n” are equal, comparison 2. will cause a runtime error.

5 NATURAL Version 3.1.1 Release Notes for UNIX

52

Enhanced Error Message Texts

Descriptions of various error messages have been extended to provide a more precise indication
as to why an error condition has occurred.

Example:

Version 2.2:

NAT0082 Invalid command, or object does not exist in library.

Version 3.1:

NAT0082 Invalid command, or object-type object-name does not exist in library.

NAT0082 Invalid command, or subprogram XYZ does not exist in library.

Assignment of Negative Numbers to Date/Time Intercepted

It is not allowed to assign a negative value to a date field (format D) or a time field (format T).

With Version 2.2, however, such invalid assignment at runtime may in some cases not be
intercepted.

With Version 3.1, this has been corrected: the assignment of a negative value to a date or time
field will always lead to an error (NAT1319).

Miscellaneous 5

53

Suppressing of Zero Display for Time Fields

With Version 2.2, the profile/session parameter ZP, which can be used to suppress the display
of field values that consist of all zeros, applies only to numeric fields (formats N, P, I and F).

With Version 3.1, the ZP parameter also applies to time fields (format T).

Assignments Between Numeric Variables of Same Length

The internal handling of assignments of a value from one variable with format N to another
variable with format N — where both variables have the same length — has been changed (so
as to be consistent with the internal handling of assignments between format N variables of
different lengths). When these variables are redefined, this may in some cases lead to different
results.

A different result will also occur if the first three bytes of the content of the system variable
*CURSOR represent a negative number and the content of *CURSOR is assigned to a
user-defined variable of format/length N6.

Dump Generation with CATALL

With Version 3.1, the profile/session parameter DU=ON (dump generation) also takes effect
when the system command CATALL is executed.

5 NATURAL Version 3.1.1 Release Notes for UNIX

54

Loading of Datasets with INPL

With Version 3.1, you can only use INPL to load datasets into the file system which are identified
as official Software AG INPL system datasets.

Note: For unloading and loading other datasets, you can use the new SYSUNLD utilities (see
page 30).

6

55

NEW NATURAL-RELATED PRODUCTS

Together with NATURAL Version 3.1.1, two new SOFTWARE AG products are available:

� Natural@Web,

� NaturalX.

Natural@Web

With NATURAL 3.1.1 and Natural@Web, you can create web pages via a NATURAL
subprogram.

This enables you to:

� return dynamic web pages generated by NATURAL subprograms,

� access the HTTP interface of your HTTP server (cookies),

� return different kinds of documents containing alphanumeric data,

� use predefined programs for HTML generation.

NATURAL provides three new libraries containing the NATURAL web interface, which is
called by the EntireX web adapter.

For details on Natural@Web, please refer to the Natural@Web documentation.

6 NATURAL Version 3.1.1 Release Notes for UNIX

56

NaturalX (Support of DCOM)

With NATURAL 3.1.1 and NaturalX, you can write distributed object–based applications and
distribute them with DCOM (distributed component object model).

This enables you to:

� allow your components to be accessed by other object-oriented components,

� execute these components on local or remote servers,

� access object-oriented components written in a variety of programming languages across
process and machine boundaries from within NATURAL programs,

� wrap existing NATURAL applications into object-oriented components.

The following concepts have been introduced into NATURAL: classes, objects, interfaces,
methods, and properties.

To integrate the new concepts smoothly into NATURAL, existing NATURAL concepts are
used. Existing object types, like local data area and subprogram, are used in new contexts. One
new NATURAL object type is introduced: the class.

The NATURAL programming language has been extended to include object-oriented
instructions. For this purpose, the following new statements are available: CREATE OBJECT,
DEFINE CLASS, SEND METHOD, INTERFACE, METHOD and PROPERTY.

The new system commands REGISTER and UNREGISTER, as well as the new profile
parameters ACTPOLICY, AUTOREGISTER and COMSERVERID are available in
conjunction with NaturalX.

For details on NaturalX, please refer to the NaturalX documentation.

Note: With NATURAL Version 3.1.1, NaturalX classes can only be used in a local NATURAL
session. The distribution of NaturalX applications via DCOM will be made available with one
of the next releases.

Notes

57

NATURAL Version 3.1.1 Release Notes for UNIX

58

Notes

59

NATURAL Version 3.1.1 Release Notes for UNIX

60

